[BOJ] Python 백준 5639번 이진 검색 트리 실버 1

728x90

https://www.acmicpc.net/problem/5639

 

5639번: 이진 검색 트리

트리를 전위 순회한 결과가 주어진다. 노드에 들어있는 키의 값은 106보다 작은 양의 정수이다. 모든 값은 한 줄에 하나씩 주어지며, 노드의 수는 10,000개 이하이다. 같은 키를 가지는 노드는 없다

www.acmicpc.net

 

문제 풀이


전형적으로 이진 트리(Binary Tree)와 트리 순회(Tree Traversal)에 대한 문제다.

 

만약 이진 트리에 대해 처음 듣거나 익숙하지 않은 사람은 이전 포스팅을 참고하여 이해하고 오는 것이 좋을 것 같다.

 

https://khsung0.tistory.com/24

 

[자료구조] 트리(Tree) 이진 트리(Binary Tree) 트리 순회 (Tree Traversal) (Python)

설명 자료구조는 크게 선형 구조, 비선형 구조로 나눠진다. 선형 구조는 Data를 차례대로 나열시킨 형태를 뜻하고 비선형 구조는 선형 구조가 아닌 모든 형태를 말한다. 즉, 노드와 간선으로 이루

khsung0.tistory.com

 

문제는 전위 순회한 결과가 주어지고 이를 후위 순회한 결과를 출력하면 된다.

 

알고리즘 외적으로도 고려해야 할 부분이 많아서 상당히 골치 아팠던 문제기도 하다.

 

처음 생각한 풀이법은 노드의 수는 10,000개 이하고 전위 순회의 결과가 입력으로 주어지니 전위 순회 순서대로 트리에 삽입하여 완성된 트리를 후위 순회하여 출력하는 방식을 생각했었다.

 

하지만 생각치 못하게 시간 초과와 메모리 초과가 떠서 틀렸었다.

 

불합격 이미지
불합격 이미지

 

다음은 불합격한 코드이다.

 

import sys
sys.setrecursionlimit(10**6)

binary_tree={}        #이진 트리를 위한 딕셔너리 선언
while True:
    try:
        num=int(input())
        if len(binary_tree)==0:        #빈 트리일 때
            root=num                   #루트로 설정
            binary_tree[root]=['*','*']
        else:
            curr=root
            while True:
                #왼쪽 서브 트리일 때
                if num<curr:
                    #왼쪽 노드가 없을 때
                    if binary_tree[curr][0]=='*':
                        binary_tree[curr][0]=num
                        binary_tree[num]=['*','*']
                        break
                    #왼쪽 자식 노드로 이동
                    else:
                        curr=binary_tree[curr][0]
                #오른쪽 서브 트리일 때
                else:
                    #오른쪽 노드가 없을 때
                    if binary_tree[curr][1]=='*':
                        binary_tree[curr][1]=num
                        binary_tree[num]=['*','*']
                        break
                    #오른쪽 자식 노드로 이동
                    else:
                        curr=binary_tree[curr][1]
    except:
        break

def postorder(curr):
    #왼쪽 자식 노드로 이동
    if binary_tree[curr][0]!='*':
        postorder(binary_tree[curr][0])
    #오른쪽 자식 노드로 이동
    if binary_tree[curr][1]!='*':
        postorder(binary_tree[curr][1])
    #현재 노드 출력
    print(curr)

postorder(root)

 

2번째 줄은 파이썬에서 기본 재귀 깊이 제한이 1000이기 때문에 1000000으로 세팅하는 코드이다.

 

이 때문에 런타임 에러(Recursion Error)가 뜬 것이다.

 

또한 입력받는 부분에서 어디까지 받는다는 제한이 없으므로 try except 구문을 사용하여 예외가 발생하기 전까지 입력을 받고 트리에 추가하는 방식으로 하였다.

 

예외가 발생하면 그대로 트리를 후위 순회하여 출력했는데 불합격한 것을 보니 다른 방식을 생각해야 했다.

 

고민하던 중에 전위 순회는 현재 노드 -> 왼쪽 자식 노드 -> 오른쪽 자식 노드 순으로 탐색하고 후위 순회는 왼쪽 자식 노드 -> 오른쪽 자식 노드 -> 현재 노드 순으로 탐색하기 때문에 현재 노드를 출력하는 타이밍을 조절해야겠다는 생각이 들었고 현재 노드보다 작은 숫자는 왼쪽 서브 트리, 큰 숫자는 오른쪽 서브 트리로 구분 지을 수 있겠다는 생각이 들었다.

 

따라서 리스트를 기준으로 첫 번째 원소는 현재 노드라 마지막에 출력하고 현재 노드보다 작은 원소들의 리스트는 왼쪽 서브 트리로 여겨 재귀 호출, 큰 원소들의 리스트는 오른쪽 서브 트리로 여겨 재귀 호출하면 차례대로 왼쪽 서브 트리 -> 오른쪽 서브 트리 -> 현재 노드 순으로 출력될 것이라 생각했고 역시 통과했다.

 

다음은 통과한 전체 코드이다.

 

import sys
sys.setrecursionlimit(10**6)

#입력받을 원소 리스트
num_list=[]
while True:
    try:
        num=int(input())
        num_list.append(num)
    except:
        break

def postorder(left,right):
    #순서 역전시 종료
    if left>right:
        return
    else:
        mid=right+1        #분할 기준
        for i in range(left+1,right+1):
            #해당 원소가 현재 노드보다 크다면 그 전까지는 왼쪽 서브 트리,
            #해당 원소 이후는 오른쪽 서브 트리이다.
            if num_list[left]<num_list[i]:
                mid=i
                break
        postorder(left+1,mid-1)
        postorder(mid,right)
        print(num_list[left])

postorder(0,len(num_list)-1)

 

트리 생성이 아닌 단순히 리스트에 원소를 입력 받으므로 입력 받는 부분은 전보다 더 간단해졌다.

 

시작은 전체 리스트의 길이부터 시작하고 가장 첫 번째 원소는 현재 노드, 그 이후부터 반복문을 돌면서 현재 노드보다 큰 원소가 있다면 그 전까지는 왼쪽 서브 트리, 큰 원소부터 이후는 오른쪽 서브 트리로 구분지어 재귀호출한다.

 

만약 큰 원소가 없을 경우를 대비해 mid=right+1을 함으로써 없으면 현재 노드를 제외한 나머지를 왼쪽 서브 트리로 보내고 두 번째 호출하는 재귀 함수는 순서가 역전되어 종료되도록 구현하였다.

 

결과 화면
결과 화면

 

인덱스를 접근하고 관리하는 방법에서 다소 헷갈리는 부분이 있고 알고리즘 외적으로도 재귀 깊이를 변경한다든지 입력받는데 처리해줘야 하는 부분이 있는 문제였다.

 

또한 해당 코드를 PyPy3로 제출하면 메모리 초과가 뜬다.

 

PyPy3가 Python3보다 연산이 빠르기에 안전하게 하기 위해 PyPy3로 먼저 제출했었는데 자료를 찾아보니 PyPy3는 최대 재귀 깊이는 제한이 없으나 10만 단위 이상으로 들어가면 Stack Overflow가 발생하여 재귀에 약하다는 정보를 얻을 수 있었다.

 

따라서 시간 초과가 뜬다면 PyPy3로, 재귀를 사용하여 메모리 초과가 뜬다면 Python3으로 제출해야한다는 지식을 알게 되었다.

728x90

댓글()

[자료구조] 트리(Tree) 이진 트리(Binary Tree) 트리 순회 (Tree Traversal) (Python)

728x90

설명


자료구조는 크게 선형 구조, 비선형 구조로 나눠진다.

 

선형 구조는 Data를 차례대로 나열시킨 형태를 뜻하고 비선형 구조는 선형 구조가 아닌 모든 형태를 말한다.

 

즉, 노드와 간선으로 이루어진 그래프(Graph), 그래프 중에서도 순환(Cycle)이 없는 그래프가 나무를 뒤집은 형태로 구성되어있다 해서 이름 붙여진 트리(Tree)가 비선형 구조이다.

 

그중에서도 이번 강의엔 트리를 설명하겠다.

 

트리 (Tree)


트리(Tree)란 앞서 말한 대로 나무가 뒤집어진 형태와 비슷해서 트리라 이름 붙어졌다.

 

트리에 대한 여러 명칭이 있는데 그림을 통해 설명하면 이해가 될 것이다.

 

해당 그림은 직접 작성한 "쉽게 풀어쓴 자료구조와 알고리즘 기본 가이드"에서 제작한 그림과 유사하게 다시 만들었다.

 

Tree 구조
Tree 구조

 

먼저 저 숫자가 들어간 동그라미는 노드(Node)라고 하며 노드를 잇는 선은 간선(Edge)라고 한다.

 

노드는 Data를 뜻하며 간선은 Data끼리의 연결을 뜻한다.

 

트리에서의 첫 시작 노드는 뿌리라 해서 루트 노드(Root Node)라 한다.

 

모든 시작은 이 루트 노드에서 이루어지며 연결 리스트(Linked List)를 알고 있다면 더미 노드(Dummy Node)와 같은 역할이다. (물론 루트 노드는 Data를 갖고 있다는 점이 다르긴 하다.)

 

연결된 노드를 기준으로 상위에 있는 노드는 부모 노드(Parent Node), 하위에 있는 노드는 자식 노드(Child Node)라 한다.

 

즉, 루트 노드는 부모 노드가 없고 대부분의 노드는 서로 부모 노드, 자식 노드가 될 수 있으며 제일 끝단의 자식 노드가 없는 노드들은 단말 노드(Leaf Node, 리프 노드)라 한다.

 

그림에서도 알 수 있듯이 루트 노드를 제외한 모든 노드들은 단 하나의 부모 노드만 가질 수 있고 이 때문에 Cycle이 생기지 않으면서 모든 노드가 연결된다.

 

또한 하나의 노드에서 자식 노드로 뻗어나가는 간선의 수를 차수(Degree)라고 한다.

 

각 노드마다 차수는 다를 수 있으며 최대 차수하나의 노드가 가지는 최대 간선의 수를 뜻한다.

 

따라서 해당 그림에서는 루트 노드가 3개의 간선을 가지므로 이 트리는 Degree가 3인 트리라고 할 수 있다.

 

깊이는 루트 노드에서 해당 노드까지 도달하는데 경유한 간선의 개수를 뜻한다.

 

또한 Level은 깊이가 동일한 노드들의 집합이다.

 

Level이 같은 노드들을 형제 노드(Sibling Node)라고 하며 루트 노드의 Level을 정의하는데 다소 차이가 있는 것 같다.

 

어떤 자료에서는 Level 0부터 시작하고 어떤 자료에서는 Level 1부터 시작하는데 깊이가 기준이 되기 때문에 큰 차이는 없을 것 같다.

 

다만 Level 1부터 시작한다면 각 노드는 Depth+1=Level이기 때문에 보다 쉬운 이해를 위해 Level 0부터 시작하여 Depth=Level로 맞춰서 글을 작성하였다.

 

루트 노드를 제외하고 나머지 노드들을 루트 노드로 생각한다면 기존의 트리에서 일부분을 트리로 생각할 수 있다.

 

이것을 서브 트리(Sub Tree)라고 하며 보통 이진 트리(Binary Tree)에서 왼쪽 서브 트리(Left Sub Tree), 오른쪽 서브 트리(Right Sub Tree)로 구분 짓는다.

 

보통 알고리즘 문제나 필기 문제로 이진 트리가 나오므로 이진 트리에 대해 설명하겠다.

 

이진 트리 (Binary Tree)


트리에 대해서 이해가 잘 됐다면 이진 트리는 별거 없다.

 

이름에서도 알 수 있듯이 트리에서 최대 차수가 2인 트리를 이진 트리라고 하기 때문이다.

 

물론 이진 트리도 형태에 따라 3가지로 분류한다.

 

편향 이진 트리&#44; 완전 이진 트리&#44; 포화 이진 트리
편향 이진 트리, 완전 이진 트리, 포화 이진 트리

 

편향 트리(Skewed Binary Tree)는 모든 노드가 왼쪽 혹은 오른쪽 자식만 갖고 있는 형태이다.

 

완전 이진 트리(Complete Binary Tree)는 마지막 Level을 제외한 모든 Level의 노드가 완전히 채워져 있으며 마지막 Level의 노드들은 왼쪽부터 채워져 있는 형태이다.

 

포화 이진 트리(Full Binary Tree)는 완전 이진 트리에서 마지막 Level의 노드들도 채워져 있는, 즉 이진 트리가 보유할 수 있는 최대 노드를 가진 형태가 포화 이진 트리다.

 

이진 트리 순회 (Binary Tree Traversal)


이진 트리의 순회는 총 4가지가 있다.

 

  1. 전위 순회 (Pre-order)
  2. 중위 순회 (In-order)
  3. 후위 순회 (Post-order)
  4. 레벨 순회 (Level-order)

1번부터 3번까지는 왼쪽 서브 트리, 현재 노드, 오른쪽 서브 트리 중에 현재 노드를 언제 탐색하느냐에 따라 이름이 바뀌는 방식이고 레벨 순회는 루트 노드부터 같은 레벨인 노드를 차례로 탐색하는 방식이므로 너비 우선 순회(Breadth-first Traversal)라고도 한다.

 

따라서 전위 순회는 현재 -> 왼쪽 -> 오른쪽, 중위 순회는 왼쪽 -> 현재 -> 오른쪽, 후위 순회는 왼쪽 -> 오른쪽 -> 현재 순서로 방문하는 방식으로 단순하게 어느 지점에서 현재 노드를 출력하느냐의 차이일 뿐이다.

 

또한 레벨 순회는 그래프 탐색의 BFS(Breadth First Search)와 같이 큐를 사용하는 방법이므로 굳이 다루진 않겠다.

 

이진 트리
이진 트리

오른쪽과 같은 이진 트리를 예시로 들어보자.

 

순회를 하기 전에 조금 더 구체적인 설명을 하자면 루트인 3인 노드를 기준으로 왼쪽으로 내려가면 현재 노드가 1인 서브 트리, 오른쪽으로 내려가면 현재 노드가 5인 서브 트리로 생각할 수 있다.

 

각 서브 트리에서 다시 서브 트리로 내려갈 수 있는 구조이다.

 

즉, 전위 순회는 3->1->0->2->5->4->6, 중위 순회는 0->1->2->3->4->5->6, 후위 순회는 0->2->1->4->6->5->3 순으로 탐색하게 된다.

 

순회 구현


 

트리를 구현하는 방법은 다양하지만 자세한 건 이진 탐색 트리 포스팅에서 다루도록 하겠다.

 

이번 포스팅에서는 딕셔너리를 이용하여 구현했다.

 

딕셔너리의 키(Key)는 현재 노드의 값을 뜻하고 값(Value)은 길이가 2인 리스트로 선언하여 0번째 인덱스는 왼쪽 자식의 값, 1번째 인덱스는 오른쪽 자식의 값을 뜻한다.

 

이때 자식 노드가 없는 것을 표현하기 위해 '*'로 선언하여 숫자가 존재할 때만 해당 자식 노드로 이동하도록 구현하면 된다.

 

전체 코드를 통해 설명하겠다.

 

def preorder(root):
    print(root,end=" ")                     #현재 노드 출력
    if binary_tree[root][0]!="*":           #왼쪽 자식 노드가 존재하면 이동
        preorder(binary_tree[root][0])
    if binary_tree[root][1]!="*":           #오른쪽 자식 노드가 존재하면 이동
        preorder(binary_tree[root][1])

def inorder(root):
    if binary_tree[root][0]!="*":
        inorder(binary_tree[root][0])
    print(root,end=" ")
    if binary_tree[root][1]!="*":
        inorder(binary_tree[root][1])

def postorder(root):
    if binary_tree[root][0]!="*":
        postorder(binary_tree[root][0])
    if binary_tree[root][1]!="*":
        postorder(binary_tree[root][1])
    print(root,end=" ")

root=3
binary_tree={3:[1,5],1:[0,2],0:['*','*'],2:['*','*'],5:[4,6],4:['*','*'],6:['*','*']}

print("전위 순회시작")
preorder(root)

print("\n\n중위 순회시작")
inorder(root)

print("\n\n전위 순회시작")
postorder(root)

 

구성을 보면 상당히 간단하단 것을 알 수 있다.

 

단순히 현재 노드의 값을 출력하는 부분이 어디에 위치하느냐에 따라 구분된다는 것을 알 수 있다.

 

따라서 한 가지를 이해하면 다른 것도 쉽기 때문에 Preorder로 설명하겠다.

 

시작은 루트부터 출발하여 각 함수의 매개변수로 넘겨준다.

 

해당 노드를 출력하고 만약 해당 노드의 왼쪽 자식 노드가 존재한다면 왼쪽 자식 노드의 값을 매개변수로 넘기고 재귀 호출한다.

 

그다음 오른쪽 자식 노드가 존재한다면 오른쪽 자식 노드의 값을 매개변수로 넘기고 재귀 호출한다면 알아서 반복하게 된다.

 

순회의 결과
순회의 결과

 

여기까지가 이진 트리에 대한 이론이지만 이를 실제 적용하기엔 다소 제한이 있다.

 

이진 트리를 직접 구현하여 사용하는 것은 이진 탐색 트리(Binary Search Tree)라고 하며 삽입과 삭제에 여러 가지 조건이 붙기 때문이다.

 

또한 트리도 사람마다 편한 방식이 다르기 때문에 다양한 구현 방법과 이진 탐색 트리의 작동 방식을 다음 포스팅에서 학습하도록 하겠다.

 

https://khsung0.tistory.com/26

 

[알고리즘] 이진 탐색 트리(Binary Search Tree) (Python)

설명 이진 탐색 트리(Binary Search Tree)란 왼쪽 서브 트리는 자신보다 작은 수들만 존재하고 오른쪽 서브 트리는 자신보다 큰 수들만 존재하는 이진트리를 뜻한다. 단순한 이진트리는 원하는 값의

khsung0.tistory.com

 

728x90

댓글()